Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hua-Yue Wu, Xiao-Bo Huang,* Jin-Chang Ding, Miao-Chang Liu and Mao-Lin Hu

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou 325027, People's Republic of China

Correspondence e-mail:
xiaobhuang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.076$
$w R$ factor $=0.190$
Data-to-parameter ratio $=14.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(Z)-5-Benzylidene-3-phenethyl-2-thioxo-imidazolidin-4-one

The title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}$, crystallizes in a triclinic unit cell with two independent molecules in the asymmetric unit. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds link the molecules into ribbons, which form stacks with short intra- and intermolecular S...C $\left[3.385\right.$ (5) \AA] and C $\cdots \mathrm{O}^{\prime}$ [3.162 (5) Å] contacts.

Comment

Imidazolinone derivatives exhibit various biological properties. Some of them have been reported to possess a broad spectrum of pharmacological activities, including anticonvulsant (Mehta et al., 1981), antiviral (El-Barbary et al., 1994) and antitumour activities (Khodair \& Bertrand, 1998). As a result, considerable effort has been made to investigate imidazolinones (Heras et al., 2001). The title compound, (I), is an intermediate in the preparation of 2-alkylthioimidazolones, which exhibit various fungicidal and herbicidal activities (Yang et al., 2004).

(I)

The title compound, (I), exists in the Z isomeric form. In the crystal structure, there are two independent molecules in the asymmetric unit (Fig. 1). They have different conformations; for example, some of the torsion angles are different (Table 1).

Figure 1
The asymmetric unit of (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level.

Received 18 January 2005
Accepted 24 January 2005 Online 29 January 2005

Figure 2
The hydrogen-bonded (dashed lines) ribbon in (I).
Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds link the molecules into ribbons (Fig. 2). Short intra- and intermolecular $\mathrm{S} 1 \cdots \mathrm{C} 29 \quad[3.385(5) \AA]$ and $\mathrm{C} 28 \cdots \mathrm{O} 2^{\mathrm{iii}}$ [3.162 (5) \AA; symmetry code: (iii) $1-x, 1-y,-z$] contacts indicate $\pi-\pi$ stacking interactions between the ribbons, forming an undulating sheet structure.

Experimental

To a solution of ethyl 3-phenyl-2-[(triphenylphosphoranylidene)-amino]prop-2-enoate (5 mmol) in dry dichloromethane was added carbon disulfide (50 mmol) and the mixture was refluxed for 29 h . The solvent was removed under pressure, and diethyl ether and petroleum ether ($1: 2,60 \mathrm{ml}$) were added to precipitate triphenylphosphine oxide. The solution was filtered and the filtrate was concentrated in vacuo to give ethyl 3-phenyl-2-isothiocyanatoacrylate. To a solution of ethyl 3-phenyl-2-isothiocyanatoacrylate in dry acetonitrile (20 ml) was added phenylethylamine (5 mmol). The mixture was allowed to stand for 3 h , whereupon the title compound precipitated. Single crystals suitable for X-ray data collection were obtained by slow evaporation of an ethanol solution (m.p. 455456 K). IR (KBr): $3246,1727,1653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (chloroform- d): $9.00(s, 1 \mathrm{H}), 7.22-7.45(m, 10 \mathrm{H}), 6.73(s, 1 \mathrm{H}), 4.13(t, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$, $3.03(t, 2 \mathrm{H}, J=7.5 \mathrm{~Hz})$ p.p.m. ${ }^{13} \mathrm{C}$ NMR (chloroform- d): 177.98, $163.39,137.67,132.79,130.82,130.50,130.05,129.59,128.45,128.09$, $127.96,127.49,126.32,125.64,114.50,112.44,42.59,33.66$ p.p.m.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}$	$Z=4$
$M_{r}=308.39$	$D_{x}=1.309 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.8221(10) \AA$	Cell parameters from 1368
$b=10.6654(10) \AA$	reflections
$c=16.5207(16) \AA$	$\theta=2.7-24.1^{\circ}$
$\alpha=107.009(2)^{\circ}$	$\mu=0.21 \mathrm{~mm}^{-1}$
$\beta=101.652(2)^{\circ}$	$T=298(2) \mathrm{K}$
$\gamma=100.645(2)^{\circ}$	Block, colourless
$V=1565.0(3) \AA^{\circ}$	$0.23 \times 0.18 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.953, T_{\text {max }}=0.969$
8414 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.076$
$w R\left(F^{2}\right)=0.190$
$S=1.13$
5560 reflections
397 parameters
H -atom parameters constrained

5560 independent reflections 4149 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 10$
$l=-16 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0799 P)^{2}\right. \\
& \quad+0.2749 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.36 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

N1-C9			
N1-C10	$1.381(4)$	$\mathrm{N} 3-\mathrm{C} 28$	$1.392(4)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.381(4)$	$\mathrm{N} 3-\mathrm{C} 26$	$1.447(4)$
$\mathrm{N} 3-\mathrm{C} 27$	$1.451(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.511(5)$
	$1.379(4)$	$\mathrm{C} 25-\mathrm{C} 26$	$1.510(5)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$			
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 7$	$86.0(4)$	$\mathrm{C} 27-\mathrm{N} 3-\mathrm{C} 26-\mathrm{C} 25$	$98.7(4)$

Table 2
Hydrogen-bonding geometry $\left(\mathrm{A}^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.86	2.71	$3.549(3)$	165
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~S}^{\mathrm{i}}$	0.86	2.67	$3.517(3)$	168
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.42	$3.323(4)$	163
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{~S} 2^{\mathrm{i}}$	0.93	2.71	$3.415(3)$	133
$\mathrm{C} 30-\mathrm{H} 30 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.44	$3.336(4)$	163
$\mathrm{C}_{3} 6-\mathrm{H} 36 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.93	2.87	$3.470(3)$	124

Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $-x, 1-y,-z$.

H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{Csp}^{2}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$, with $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, and $\mathrm{C} s p^{3}-\mathrm{H}=0.96 \AA$, with $U_{\text {iso }}=$ $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support by the Zhejiang Provincial Technology Project Foundation of China (grant No. 2003C31026) and the Bureau of Science and Technology of Wenzhou (grant No. G 2004060).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
El-Barbary, A. A., Khodair, A. I., Pedersen, E. B. \& Nielsen, C. (1994). J. Med. Chem. 37, 73-77.

organic papers

Heras, M., Ventura, M., Linden, A. \& Villalgordo, J. M. (2001). Tetrahedron, 57, 4371-4388.
Khodair, A. I. \& Bertrand, P. (1998). Tetrahedron, 54, 4859-4872.
Mehta, N. B., Diuguid, C. A. R. \& Soroko, F. E. (1981). J. Med. Chem. 24, 465468.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, F. L., Liu, Z. J., Huang, X. B. \& Ding, M. W. (2004). J. Heterocycl. Chem. 41, 77-83.

